

Speed Correction Drives

For Shaft Phasing and Narrow Range Speed Control

- Low Backlash
- Low Transmission Error
- Wide Range of Ratios
- Variety of Specialty Models

Tandler, the world leader in precision shaft phaseable gearbox manufacturing, has been satisfying the most demanding gearing requirements for over 50 years. In cooperation with DieQua Corporation, we are providing the most extensive and highest quality speed correction drive program available. With the lowest backlash, the lowest transmission error, and the widest range of ratios and specialty models, you can be assured of maximum design versatility and superior performance.

Contents

Overview	3
Sizing Information	4 - 5
SP2 Right Angle	6 - 11
PE2 Inline 3:1	12 - 15
PD2 Inline 1:1	16 - 19
KD Inline 2:1	20 - 23
KD2 Inline 2:1	24 - 27
Technical Data	28 - 30
Special Designs and Options	31

Speed Correction Gearboxes Unmatched Design Flexibility for controlling speed and position

Speed correction gearboxes allow changes in the angular position of the output shaft relative to the input shaft, and provide the capability to vary the output speed within a narrow range. Through the integration of a secondary input shaft, extremely precise positioning and speed control can be easily achieved.

SP2 with standard right angle

SP2 with hollow shaft

SP2 with reinforced shaft

SP2 with switch

SP2 with one-way auxiliary

SP2 with two-way auxiliary

PE2 Single planetary in-line

PD2 Double planetary in-line

KD2 Differential

Sizing Speed Correction Gearboxes SIZING

Pertinent Data

- 1. Input speed.
- 2. Gear ratio.
- 3. Horsepower requirement.
- 4. Method of shaft connection.
- 5. Mounting position.

Explanation of Symbols

To select any gearbox, use the appropriate charts and tables in this catalog. All of them use the following symbols:

- = input rpm n_{in} = output rpm nout = rpm on d_1 n_1
- = rpm on d₂ n_2 i
 - = gear ratio = n_{in} : n_{out} $= d_1 : d_2$
- itot
- d = a shaft or a pinion
- = horsepower Hp
- Μ = torque
- = input torque, in Newton-meters, Nm Md_{in}
- Md_{out} = output torque, in Newton-meters, Nm
- Nm = Newton-meters
- N1 = input power, in kilowatts, kW
- N2 = output power, in kilowatts, kW
- С = operational factor

All Tandler gearboxes are delivered with the appropriate quantity and type of oil for normal operation. For special lubrication and mounting requirements, consult the Technical Data section, page 28.

Pinion d₁

Steps for Gearbox Selection

1. Calculate input torque. Input torque is defined as the torque entering the gearbox or driving torque, regardless if it is on the d_1 pinion or the d_2 shaft.

$$Md_{in} = \frac{7160 \times Hp}{n_{in}}$$

2. Find the appropriate sizing chart for your gear ratio on pages 6, 7, 12, 16, 20 or 24.

3.Find input torque on the vertical axis and input rpm on the horizontal axis. The point of intersection will fall in a range that identifies the size gearbox you need.

4. If your selection approaches the torque capacity of the gearbox, or if it is subject to extreme conditions, consult the operational factor chart on page 28.

5. Tandler's gear boxes are designed to operate without special cooling at temperatures up to 90°C (200°F). If your application approaches the maximum speed of the gearbox, or is subject to high ambient temperatures, consult your DieQua representative for special cooling options.

6. Select the appropriate internal gear arrangement which specifies shaft rotations and correct shaft position.

- 7. Consider how the gearbox is mounted...
 - If connecting with rigid or flexible couplings, consider alignment requirements. Consult your DieQua representative.
 - If connecting with a pulley or gear, check the radial load capacity for each shaft. Consult your DieQua representative.
 - If any shafts are mounted vertically, consider special bearing lubrication options. Consult your DieQua representative.
- 8. Specify the Tandler part number. (See example below).

Specifying the Tandler Part Number

	SP2	A1	1:2	IIIR	
Type/Series Size of Gearboxes Total Ratio i _{tot} = n ₁ : n ₂ Gear Arrangement Special Option/Design					

Note: When ordering, total ratio must be specified as $i_{tot} = d_1 : d_2$

Actual operational usage and ratio specification may be reversed.

Standard Right Angle

This design combines a planetary gear system with a right angle spiral bevel gearbox. The result is unparalleled design flexibility. The SP2 gearbox is available in 7 standard sizes and 8 standard ratios.

Available Ratios										
Type SP2 gearbox is available, for applications driving on pinion d_1 , $i = d_1/d_2 = n_1/n_2$, in 8 ratios:										
1.66:1*	1:1.5									
1.33:1*	1:2									
1:1	1:3									
1:1.2*	1:3.75*									
and applications $d_1 = d_2/d_1 = n_2/d_1$	lriving on shaft d ₂ , /n ₁ , in 8 ratios:									
4.5:1*	1.5:1									
3.75:1*	1.2:1*									
3:1	1:1									
2:1	1:1.33*									

* Not available in SP2 00

Sizing Charts for Driving on Shaft d₂

Gear Ratio d₂:d₁ of 1:1

Gear Ratio $d_2:d_1$ of 1.2:1 and 1.5:1

*1Nm = 8.85 in. lbs.

Selection note: Lines represent the maximum input torque capacity of each size.

SP2

SP2

Gear Ratio d₂:d₁ of 3.75:1

Gear Ratio d₂:d₁ of 3:1

Gear Ratio d₂:d₁ of 4.5:1

Schematic:

Dimensions

Size	a□	b	c _{j7}	dø _{1je}	₃ d ^ø 2j	₆ d ^ø 3	i _{j6} e□	f	9 ₁	g ₂	h	k1 ¹⁾	k ₂	k ₃	կ	I_2	l ₃	m ₁	m ₂	m ₃	m ₄	m ₅	ngơ j7	o _{j7}	r	s	t	u□	v	w	х	у	z
SP2 00	80	110	74	16	20	12	60	3.5	70	32	105	M 6	М 6	6 M 6	25	35	20	135	93.5	65.5	55.5	77	80	48	M 6	6 48	79.5	100	40	80	80	80	0
SP2 01	110	145	102	22	22	14	82	3.5	80	35	133	M 8	М 8	8 M 8	35	35	30	174	111	85	69	100	116	55	M 8	8 55	98	125	50	100	100	100	0
SP2 0A	110	145	102	22	22	14	82	3.5	80	40	148	M 8	M 8	3 M 8	35	35	30	189	111	89	81.75	106	130	60	M 8	60	112	150	55	110	110	110	26
SP2 A1	140	175	130	32	32	14	105	4.5	80	40	163	M10	M 8	3 M 8	45	45	30	214	137	104	81.75	106	130	60	M10	60	112	150	55	110	110	110	26
SP2 AB	140	175	130	32	32	14	105	4.5	80	40	171	M10	M10	0 M 8	45	45	30	222	137	108	93	94	155	60	M10	60	124	170	65	118	145	145	28
SP2 B1	170	215	160	42	42	14	130	4.5	80	40	186	M12	M10	0 M 8	60	60	30	252	172	123	93	94	155	60	M12	60	124	170	65	118	145	145	28
SP2 BC	170	215	160	42	42	18	130	4.5	95	45	194	M12	M10	0 M 8	60	60	30	261	172	125	112.75	105	185	70	M12	2 70	148	210	70	140	160	160	32
SP2 C1	210	260	195	55	55	18	160	5	95	45	214	M16	M10	0 M 8	85	85	30	306	220	145	112.75	105	185	70	M16	5 70	148	210	70	140	160	160	32
SP2 CD	210	260	195	55	55	26	160	5	140	60	233	M16	M10	0 M 8	85	85	45	326	220	153	132.5	150	225	85	M16	6 85	175	260	110	220	140	140	44.5
SP2 D1	260	330	245	60	60	26	200	5	140	60	258	M16	M10	0 M 8	95	95	45	361	265	178	132.5	150	225	85	M16	6 85	175	260	110	220	140	140	44.5
SP2 DE	260	330	245	60	60	32	200	5	180	60	269	M16	M12	2 M 8	95	95	45	373	265	182	165	172	290	90	M16/20	90	210	330	150	300	140	124	53
SP2 E1	330	430	310	65	75	32	260	5	180	60	304	M20	M12	2 M 8	100	120	45	413	340	217	165	172	290	90		90	210	330	150	300	140	124	53

Dimensions in mm

Screwed-in length = k • 1.5
 Keys according to DIN 6885, Centering DIN 332 Subject to changes.

SP2

Internal Gear Arrangements

Key Dimensions

Gearbox Size	$d_1 = d_2$	d ₃
SP2 00	5 x 5 (d ₁) 6 x 6 (d ₂)	4 x 4
SP2 01	6 x 6	5 x 5
SP2 0A	6 x 6	5 x 5
SP2 A1	10 x 8	5 x 5
SP2 AB	10 x 8	5 x 5
SP2 B1	12 x 8	5 x 5
SP2 BC	12 x 8	6 x 6
SP2 C1	16 x 10	6 x 6
SP2 CD	16 x 10	8 x 7
SP2 D1	18 x 11	8 x 7
SP2 DE	18 x 11	10 x 8
SP2 E1	18 x 11 (d ₁) 20 x 12 (d ₂)	10 x 8

Keys according to DIN 6885, dimensions in mm Subject to changes.

Ordering Example

Backlash:

Standard	7 - 9 arc minutes
Reduced	4 - 6 arc minutes

Transmission Error:

Standard	6 - 8 arc minutes
G2	4 - 6 arc minutes
G1	2 - 3 arc minutes

Note: Disengage and Reversing models may add up to 1.5 times these values. S

SP2

Positional Correction Factors (phasing)

1 revolution = 360° on worm shaft d_3 for drive on shaft d_1 corresponds to:											
For output shaft d ₂ (thru-shaft)	1° 36'	2°	2° 40'	3° 12'	4°	5° 20'	8°	10°	12°		
Ratio of the overall drive (i = d ₁ : d ₂) 1.66:1 1.33:1 1:1 1:1.2 1:1.5 1:2 1:3 1:3.75 1											
For drive on the thru-shaft d_2 , for all the above ratios, the differential movement on the shaft $d_1 = \pm 2^\circ 40'$ for one revolution of the worm shaft d_3 .											

Note: Other correction rates are available.

Speed Correction Factors for Worm Shaft d₃

Power Requirements for Worm Shaft d₃

To size the correction motor for shaft d_3 , use the following formula to determine the required input torque Md_3 , with main drive on shaft d_2 :

$$Md_3 = Output torque 88$$

To determine the horsepower requirement of the correction motor, use the following formula:

$$Hp = \frac{Md_3 \times n_3 \text{ (correction shaft speed)}}{7160}$$

Note: When driving on shaft d_1 for speed increasing applications, consult your DieQua representative for sizing instructions.

Operational Factors

The sizing charts for SP2 gearboxes identify the torque carrying capacity for sizes SP2 00 through SP2 E1 gearboxes. These ratings were created by computations and verified by extensive test stand operations. Maximum acceptable operating temperatures are 90°C. To maintain proper lubrication, ISO VG 46 mineral based oils are used.

For applications of continuous high temperature operation, ISO VG 68 synthetic oils are used. If the design data indicates that maximum torque ratings may be reached, for any given size gearbox, operational factors need to be considered in the sizing calculations. See page 28 for more information, or consult your DieQua representative.

Radial Load Capacities F_R on Shaft d₁

Radial Load Capacities F_R on Shaft d₂

Values are higher with taper bearing option.

Note: For axial load capacities F_A on shaft d_1 or d_2 , consult your DieQua representative. 1 N = .22 lbs. SP2

Single-Planetary Type PE2 Speed Correction Gearbox

	Available	Ratios
PE2 gea	arbox is ava	ilable in 2 ratios:
	3:1	1:3

The PE2 is a single stage planetary gearbox used for in-line shaft phasing or narrow range speed control. The unit is used as a 3:1 reducer or a 1:3 increaser, depending on whether the d_1 or d_2 shaft is used as the input. This gearbox is available in 7 standard sizes.

Sizing Charts

Input Speed on Shaft d₁

Input Speed on Shaft d₂

PE2

^{*1}Nm = 8.85 in. lbs.

Schematic:

Dimensions

Size	u	b	dø _{1j6}	dø _{2j6}	dø 3j6	; f	g ₁ g	9 ₂ I ₁	l ₂	I ₃	m ₁	m ₂	m ₄	m ₅	n ^ø j7	o ^ø j7	s	t	v ₁	w ₁	У1	z	r ₁ thread	d ₁ key	r ₂ thread	d ₂ key	r ₃ thread	d ₃ key
PE2 00 PE2 01 PE2 A1 PE2 B1 PE2 C1 PE2 D1 PE2 E1	100 7 125 150 170 210 260 330	74.5 87 105 117 127 150 164	14 16 22 32 42 50 60	16 22 32 42 55 60 65	12 14 14 14 18 26 32	5 7 6 8 6 8 7 9 814 918	70 32 30 39 30 40 30 40 30 40 30 60 30 60	2 25 5 30 0 35 0 45 5 60 0 75 0 80	5 29 5 49 5 60 5 60 5 99 5 99	5 20 5 30 5 30 5 30 5 30 5 45 0 45	65 75 87 105 125 153 166	69.5 89 110 129 161 183 196	55.5 69 81.75 93 112.75 132.5 165	77 100 106 94 105 150 172	80 116 130 155 185 225 290	48 4 55 5 60 6 70 7 85 8 90 9	48 55 60 60 70 85 90	79.5 98 112 124 148 175 210	40 50 55 65 70 110 150	80 100 110 118 140 220 300	80 100 110 145 160 140 ^{124/140}	0 26 28 32 44.5 53	M 6 M 6 M 8 M10 M12 M16 M16	5 x 5 5 x 5 6 x 6 10 x 8 12 x 8 14 x 9 18 x 11	M 6 M 8 M10 M12 M16 M16 M16	5 x 5 6 x 6 10 x 8 12 x 8 16 x 10 18 x 11 18 x 11	M 5 M 6 M 6 M 6 M 6 M 8 M10	4 x 4 5 x 5 5 x 5 5 x 5 6 x 6 8 x 7 10 x 8

Dimensions in mm Keys according to DIN 6885, Centering DIN 332 Subject to changes.

Dimensions for Mounting Holes and Oil Sight-Glass

Size PD2 and PE2	v ₂	w ₂	У ₂	x ₁	x ₂	k1 ¹⁾	k ₂	k ₃	Stan c	dard Sig j	ght Glass h	Opti c	onal Sigl e = j	nt Glass h
00	33	60	80	29.5	30	Μ5	M 6	M 6	68	50	44.5			
01	50	85	100	36	32	Μ6	M 8	M 8	92	58	52	92	76	52
A1	55	95	110	40	42	M 8	M 8	M 8	112	72	61	112	76	61
B1	65	118	145	52	38	M10	M10	M 8	124	78	71	123	76	71
C1	70	140	160	50	46	M12	M10	M 8	145	112	76	164	127	73
D1	100	170	220	57	58	M12	M10	M 8	185	110	90	192	127	90
E1	125	220	290	63	60	M16	M12	M 8	235	140	106	227	127	118

Dimensions in mm 1) Screwed-in length = $k \cdot 1.5$

PE2

14

PE2

Positional Correction Factors (phasing)

One revolution of 360 degrees of the worm gear shaft equals 1/135 of a revolution (2 degrees 40 minutes) in drive output on shaft d_2 , or 1/45 of a revolution (8 degrees) in drive output on shaft d_1 .

Power Requirements for Worm Shaft d₃

To size the correction motor for shaft d_3 , use the following formula to determine the required input torque Md_3 , with main drive on shaft d_1 :

$$Md_3 = Output torque 88$$

To determine the horsepower requirement of the correction motor, use the following formula:

 $Hp = \frac{Md_3 \times n_3 \text{ (correction shaft speed)}}{7160}$

Note: When driving on shaft d_2 for speed increasing applications, consult your DieQua representative for sizing instructions.

Ordering Example

Note: Other correction rates are available.

Backlash:

Standard 4 - 5 arc minutes Reduced 2 - 3 arc minutes

Transmission Error:

Standard	5 - 7 arc minutes
G2	4 - 5 arc minutes
G1	2 - 3 arc minutes

Operational Factors

The sizing charts for PE2 gearboxes identify the torque carrying capacity for sizes PE2 00 through PE2 E1 gearboxes. These ratings were created by computations and verified by extensive test stand operations. Maximum acceptable operating temperatures are 90°C. To maintain proper lubrication, ISO VG 46 mineral based oils are used.

For applications of continuous high temperature operation, ISO VG 68 synthetic oils are used. If the design data indicates that maximum torque ratings may be reached, for any given size gearbox, operational factors need to be considered in the sizing calculations. See page 28 for more information, or consult your DieQua representative.

Radial Load Capacities FR on Shaft d_1

Radial load capacities may be increased using different bearing types.

Radial Load Capacities FR on Shaft d₂

Note: For axial load capacities F_A on shaft d_1 or $\mathsf{d}_2,$ consult your DieQua representative. 1 N = .22 lbs.

PE2

Double-Planetary

Type PD2 Speed Correction Gearbox

Available Ratios

PD2 gearbox is available in1 ratio: 1:1

The PD2 is a dual stage planetary gearbox used for in-line shaft phasing or narrow range speed control. The unit is offered in a 1:1 ratio and is available in 7 standard sizes.

Sizing Chart

^{*1}Nm = 8.85 in. lbs.

Input Speed on Shaft d₁ or d₂

Dimensions

PD2 00 100 130 16 12 5 70 32 25 25 20 120.5 69.5 55.5 77 80 48 39.5 48 79.5 40 80 80 0 M 6 5 x 5 M 5 48 79.5 40 80 80 0 M 6 5 x 5 M 5 48 79.5 40 80 80 0 M 6 5 x 5 M 5 48 79.5 40 80 80 0 M 6 5 x 5 77 80 48 39.5 48 79.5 40 80 0 M 6 5 x 5 77 80 48 39.5 48 79.5 40 80 0 M 6 5 x 5 77 10 110 26 M 6 5 55 77 80 48 39.5 48 50 100 100 0 M 8 6 x 6 <th>Size</th> <th>u</th> <th>b</th> <th>d_{1j6}</th> <th>d^ø2j6</th> <th>dø_{3j6}</th> <th>f</th> <th>9₁</th> <th>9₂</th> <th>I₁</th> <th>l₂</th> <th>I₃</th> <th>m₁</th> <th>m₂</th> <th>m₄</th> <th>m₅</th> <th>n^øj7</th> <th>o_{j7}</th> <th>р</th> <th>s</th> <th>t</th> <th>v₁</th> <th>w₁</th> <th>У1</th> <th>z</th> <th>r₁ = r₂ thread</th> <th>d₁ = d₂</th> <th>r₃ thread</th> <th>d₃</th>	Size	u	b	d _{1j6}	d ^ø 2j6	dø _{3j6}	f	9 ₁	9 ₂	I ₁	l ₂	I ₃	m ₁	m ₂	m ₄	m ₅	n ^ø j7	o _{j7}	р	s	t	v ₁	w ₁	У1	z	r ₁ = r ₂ thread	d ₁ = d ₂	r ₃ thread	d ₃
PD2 B1 170 186 42 42 14 6 80 40 60 60 30 189 129 93 94 155 60 63 60 124 65 118 145 28 M12 12 x 8 M 6 5 PD2 C1 210 212 55 55 18 7 95 45 85 30 235 161 112.75 105 185 70 69 70 148 70 140 160 32 M16 16 x 10 M 6 6 PD2 D1 260 242 60 60 26 7 140 95 95 45 263 183 132.5 150 225 85 81 85 175 110 220 140 44.5 M16 18 x 11 M 8 8	PD2 00 PD2 01 PD2 A1 PD2 B1 PD2 C1 PD2 D1	100 125 150 170 210 260	130 148 171 186 212 242	16 22 32 42 55 60	16 22 32 42 55 60	12 14 14 14 18 26	5 6 6 7 7	70 80 80 80 95 140	32 35 40 40 45 60	25 35 45 60 85 95	25 35 45 60 85 95	20 30 30 30 30 45	120.5 141 163 189 235 263	69.5 89 110 129 161 183	55.5 69 81.75 93 112.75 132.5	77 100 106 94 105 150	80 116 130 155 185 225	48 55 60 60 70 85	39.5 48 59 63 69 81	48 55 60 60 70 85	79.5 98 112 124 148 175	40 50 55 65 70 110	80 100 110 118 140 220	80 100 110 145 160 140	0 26 28 32 44.5	M 6 M 8 M10 M12 M16 M16	5 x 5 6 x 6 10 x 8 12 x 8 16 x 10 18 x 11	M 5 M 6 M 6 M 6 M 6 M 8	4 x 4 5 x 5 5 x 5 5 x 5 6 x 6 8 x 7

Dimensions in mm Keys according to DIN 6885, Centering DIN 332 Subject to changes.

Dimensions for Mounting Holes and Oil Sight-Glass

Size PD2 and PE2	v ₂	w ₂	У ₂	x ₁ :	¹⁾ k ₂ k ₁	k ₂	k ₃	Stan c	dard Sig j	ght Glass h	Opti c	onal Sig e = j	ht Glass h
00	33	60	80	29.5 30) M 5	M 6	M 6	68	50	44.5			
01	50	85	100	36 32	2 M 6	M 8	M 8	92	58	52	92	76	52
A1	55	95	110	40 42	2 M 8	M 8	M 8	112	72	61	112	76	61
B1	65	118	145	52 38	8 M10	M10	M 8	124	78	71	123	76	71
C1	70	140	160	50 46	6 M12	M10	M 8	145	112	76	164	127	73
D1	100	170	220	57 58	M12	M10	M 8	185	110	90	192	127	90
E1	125	220	290	63 60) M16	M12	M 8	235	140	106	227	127	118

One revolution of 360 degrees of the worm gear shaft equals 1/135 of a revolution (2 degrees 40 minutes) on shafts d_1 or d_2 .

Speed Correction Factors

Power Requirements for Worm Shaft d₃

To size the correction motor for shaft d_3 , use the following formula to determine the required input torque Md_3 , with main drive on shaft d_1 :

$$Md_3 = Output torque 88$$

To determine the horsepower requirement of the correction motor, use the following formula:

$$Hp = \frac{Md_3 \times n_3 \text{ (correction shaft speed)}}{7160}$$

Note: When driving on shaft d_2 , consult your DieQua representative for sizing instructions.

Ordering Example

Note: Other correction rates are available.

Backlash:

Standard 7 - 9 arc minutes Reduced 4 - 5 arc minutes

Transmission Error:										
Standard	6 - 8 arc minutes									

G2	5 - 6 arc minutes
G1	2 - 3 arc minutes

Operational Factors

The sizing charts for PD2 gearboxes identify the torque carrying capacity for sizes PD2 00 through PD2 E1 gearboxes. These ratings were created by computations and verified by extensive test stand operations. Maximum acceptable operating temperatures are 90°C. To maintain proper lubrication, ISO VG 46 mineral based oils are used. For applications of continuous high temperature operation, ISO VG 68 synthetic oils are used. If the design data indicates that maximum torque ratings may be reached, for any given size gearbox, operational factors need to be considered in the sizing calculations. See page 28 for more information, or consult your DieQua representative.

14,000 6 Radial 12,000 lload Size @ Max. rpm @ Min. rpm 0 10,000 capacity on PD2 00 2000 N 500 N PD2 01 3000 N 800 N 8000 G) 6) PD2 A1 5000 N 1000 N PD2 B1 6500 N 1400 N 6000 shafts d_1 and d_2 in PD2 C1 7000 N 2780 N 4 PD2 D1 10,000 N 4590 N 4000 0 PD2 E1 13,000 N 8200 N 00 2000 Î 0 20 100 200 300 400 500 600 700 800 900 1000 Speed on shaft d1 in rpm

Radial Load Capacities FR on Shaft d₁ and Shaft d₂

Note: For axial load capacities F_A on shaft d_1 or $d_2,$ consult your DieQua representative. 1 N = .22 lbs.

Differential KD

Type KD Speed Correction Gearbox

Available RatiosKD gearbox is available in 2 ratios:1:22:1

The KD gearbox is used for in-line shaft phasing or narrow range speed control. The unit is used as a 2:1 reducer or 1:2 increaser, depending on whether the d1 or the d2 shaft is used as the input. This gearbox is available in 6 standard sizes.

Sizing Charts

Input Speed on Shaft d₁

Input Speed on Shaft d₂

KD

Schematic:

Dimensions

Size	a□	b	c ^ø j7	d ^ø 1j6	d ^ø 2j6	d ^ø 3j6	e□	f	k ¹⁾	Ч	I_2	I_3	m ₁	m ₂	m ₃	m ₄	m ₅	n	р	r ₁	r ₂	r ₃	S _{j7}
KD 01	110	145	102	14	18	10	82	3.5	M 8	30	35	20	106	111	82	29	37.5	61	50	M 6	M 6	_	50
KD A1	140	175	130	22	28	14	105	4.5	M10	35	45	30	127	137	107	38.5	48.5	79	61	M 8	M 8	Μ5	56
KD B1	170	215	160	28	36	18	130	4.5	M12	45	55	30	157	167	122	49	60	95	77	M 8	M10	Μ6	62
KD C1	210	260	195	36	45	22	160	5	M16	55	60	35	190	195	147	58	74	115	95	M10	M12	M 8	74
KD D1	260	330	245	45	55	26	200	5	M16	70	85	45	240	255	184	74	88	143	110	M12	M16	M 8	83
KD F1	330	430	310	55	65	38	260	5	M20	85	100	65	305	320	241	100	113.5	180	150	M16	M16	M10	103

Dimensions in mm Keys according to DIN 6885, Centering DIN 332 1) Screwed-in length = k • 1.5 Subject to changes

Key Dimensions

Gearbox Size	d ₁	d ₂	d ₃
KD 01	5 x 5 x 25	6 x 6 x 30	3 x 3 x 16
KD A1	6 x 6 x 30	8 x 7 x 40	5 x 5 x 25
KD B1	8 x 7 x 40	10 x 8 x 50	6 x 6 x 25
KD 01	10 x 8 x 50	14 x 9 x 50	6 x 6 x 30
KD D1	14 x 9 x 63	16 x 10 x 70	8 x 7 x 36
KD E1	16 x 10 x 70	18 x 11 x 90	10 x 8 x 56

Keys according to DIN 6885, dimensions in mm Subject to changes.

KD

KD

Positional Correction Factors (phasing)

One revolution of 360 degrees of the worm shaft d_3 equals 5 degrees in drive output on shaft d_2 or 10 degrees in drive output on shaft d_1 .

Note: Other correction rates are available.

Speed Correction Factors

Power Requirements for Worm Shaft d₃

To size the correction motor for shaft d_3 , use the following formula to determine the required input torque Md_3 , with main drive on shaft d_1 :

$$Md_3 = Md_1$$
23.50

To determine the horsepower requirement of the correction motor, use the following formula:

$$Hp = \frac{Md_3 \times n_3 \text{ (correction shaft speed)}}{7160}$$

Note: When driving on shaft d_2 , consult your DieQua representative for sizing instructions.

Ordering Example

Operational Factors

The sizing charts for KD gearboxes identify the torque carrying capacity for sizes KD 01 through KD E1 gearboxes. These ratings were created by computations and verified by extensive test stand operations. Maximum acceptable operating temperatures are 90°C. To maintain proper lubrication, ISO VG 46 mineral based oils are used.

For applications of continuous high temperature operation, ISO VG 68 synthetic oils are used. If the design data indicates that maximum torque ratings may be reached, for any given size gearbox, operational factors need to be considered in the sizing calculations. See page 28 for more information, or consult your DieQua representative.

Radial Load Capacities FR on Shaft d₁ and Shaft d₂

Gearbox Size	Radial Load Capacity on shaft d_1 or shaft d_2
KD 01	200 N
KD A1	300 N
KD B1	400 N
KD C1	550 N
KD D1	750 N
KD E1	1000 N

1 N = .22 lbs.

For higher radial capacities, use the KD2 series.

Backlash:

Standard 5 - 7 arc minutes Reduced 3 - 4 arc minutes

Transmission Error:

Standard	6 - 8 arc minutes
G2	5 - 6 arc minutes
G1	2 - 3 arc minutes

EREN

-

⊳

Differential KD2

Type KD2 Speed Correction Gearbox

Available Ratios									
KD2 gearbox is available in 2 ratios:									
1:2 2:1									

The KD2 model has a number of design advantages over the KD model. They include a higher correction ratio for more precise speed control, a self-locking worm gear, and a modified bearing configuration providing for higher radial load and torque transmission capacities. This unit is also used as a 2:1 reducer or 1:2 increaser, depending on whether the d_1 or the d_2 shaft is used as the input. It is available in 5 standard sizes.

Sizing Charts Input Speed on Shaft d₁

Input Speed on Shaft d₂

KD2

Schematic:

Dimensions

Size	a□	b	c ^ø j7	d ^ø 1j6	d ^ø 2j6	d _{3j6}	e□	g	h	k ¹⁾	I ₁	I_2	l ₃	m ₁	m ₂	m ₃	m ₄	m ₅	n	øo	р	r ₁	r ₂	r ₃	S _{j7}
KD2 A1	140	175	130	22	28	14	105	5.5	41.5	M10	35	45	30	164	174	107	38.5	48.5	79	90	61	M 8	M 8	Μ5	56
KD2 B1	170	215	160	28	36	18	130	7.5	54.5	M12	45	55	30	207	217	122	49	60	95	110	77	M 8	M10	Μ6	62
KD2 C1	210	260	195	36	45	22	160	6	73	M16	55	60	35	258	263	147	58	74	115	135	95	M10	M12	M 8	74
KD2 D1	260	330	245	45	55	26	200	7	94	M16	70	85	45	329	344	184	74	88	143	150	110	M12	M16	M 8	83
KD2 E1	330	430	310	55	65	38	260	9	130	M20	85	100	65	430	445	241	100	113.5	180	230	150	M16	M16	M10	103

Dimensions in mm Keys according to DIN 6885, Centering DIN 332 1) Screwed-in length = $k \cdot 1.5$ Subject to changes

Key Dimensions

Gearbox Size	d ₁	d ₂	d ₃
KD2 A1	6 x 6 x 30	8 x 7 x 40	5 x 5 x 25
KD2 B1	8 x 7 x 40	10 x 8 x 50	6 x 6 x 25
KD2 C1	10 x 8 x 50	14 x 9 x 50	6 x 6 x 30
KD2 D1	14 x 9 x 63	16 x 10 x 70	8 x 7 x 36
KD2 E1	16 x 10 x 70	18 x 11 x 90	10 x 8 x 56

Keys according to DIN 6885, dimensions in mm Subject to changes.

Т m R m NTIAL One revolution of 360 degrees of the worm shaft d_3 equals 3 degrees in drive output on shaft d_2 or 6 degrees in drive output on shaft d_1 .

Note: Other correction rates are available.

Speed Correction Factors

Power Requirements for Worm Shaft d₃

To size the correction motor for shaft d_3 , use the following formula to determine the required input torque Md_3 , with main drive on shaft d_1 :

$$Md_3 = Md_1$$
39

To determine the horsepower requirement of the correction motor, use the following formula:

$$Hp = \frac{Md_3 \times n_3 \text{ (correction shaft speed)}}{7160}$$

Note: When driving on shaft d_2 for speed increasing applications, consult your DieQua representative for sizing instructions.

Ordering Example

KD2

Operational Factors

The sizing charts for KD2 gearboxes identify the torque carrying capacity for sizes KD2 A1 through KD2 E1 gearboxes. These ratings were created by computations and verified by extensive test stand operations. Maximum acceptable operating temperatures are 90°C. To maintain proper lubrication, ISO VG 46 mineral based oils are used.

For applications of continuous high temperature operation, ISO VG 68 synthetic oils are used. If the design data indicates that maximum torque ratings may be reached, for any given size gearbox, operational factors need to be considered in the sizing calculations. See page 28 for more information, or consult your DieQua representative.

Radial Load Capacities F_R on Shaft d₁ and Shaft d₂

Gearbox Size	Shaft d ₁	Shaft d ₂
KD2 A1	1250 N	1500 N
KD2 B1	1700 N	2200 N
KD2 C1	2400 N	3250 N
KD2 D1	3000 N	3800 N
KD2 E1	3500 N	4500 N

1 N = .22 lbs.

Backlash:

Standard 5 - 7 arc minutes Reduced 3 - 4 arc minutes

Transmission Error:

Standard	6 - 8 arc minutes
G2	5 - 6 arc minutes
G1	2 - 3 arc minutes

TANDLER Technical Data

Speed Correction Gearboxes

Operational Factors

In order to properly size a gearbox for any application, it is important to consider the environment in which the gearbox must operate. The sizing charts shown earlier in this catalog contain the characteristic output torque limit lines for SP2, PE2, PD2, KD and KD2 type gearboxes. These values were created by extensive computations and test stand operations in a controlled environment. Actual applications require that the following factors be taken into consideration, especially when approaching the torque limits for any given gearbox.

Degree of	Driving machine												
shock of	Electric motor –				Piston engine, hydraulic motor –				Single cylinder piston engine –				
the driven	running time in hours per day				running time in hours per day				running time in hours per day				
machine	0.5	3	8	24	0.5	3	8	24	0.5	3	8	24	
	0.5	0.8	1.0	1.25	0.8	1.0	1.25	1.5	1.0	1.25	1.5	1.75	
	0.8	1.0	1.25	1.5	1.0	1.25	1.5	1.75	1.25	1.5	1.75	2.0	
	1.25	1.5	1.75	2.0	1.5	1.75	2.0	2.25	1.75	2.0	2.25	2.5	

I Almost shock-free, e.g., electric generators, conveyor screws, light elevators, electric trains, ventilators, stirrers.

II Moderate shocks, e.g., heavy elevators, crane turrets, piston pumps, mine ventilators, cable winches.

III Heavy shocks, e.g., punch presses, shears, steel rolling machines, mills, looms.

HP1 is the normal input power produced by the drive motor in HP.

 $\ensuremath{\mathsf{Md}_{\mathsf{c}}}$ is the corrected input torque in Nm, and

c is the correction factor given in the table above.

$$HP_c = HP_1 x c$$
 $Md_c = Md_{in} x c$

HP_c = corrected input power

Mdin = calculated input torque

 Md_{c} = corrected input torque

Thermal Stress

Although a specific gearbox may have the mechanical capability to operate at high speeds, thermal considerations may reduce its actual capacity. The gearboxes are designed to operate at temperatures up to 90°C. If the gearboxes are running at high speeds under heavy load in an enclosed environment, overheating may result, substantially reducing the life of the unit.

Ventilation

It is extremely important that the gearbox have sufficient airflow over it. The gearbox dissipates most of its excess heat by convection. If the gearbox is built into an enclosure without sufficient airflow, overheating may occur, substantially reducing the life of the unit.

External Cooling Options

If your gearbox is running at high speeds, or it is in an environment where it cannot dissipate enough excess heat, additional cooling devices will need to be installed. Several cooling options are listed below. Please consult your DieQua representative for the appropriate special design number and pricing.

External Cooling Ribs. Extruded aluminum cooling ribs can be made to fit onto any exposed side of a

gearbox. These ribs are designed to provide additional surface area to increase the convection cooling properties of the gearbox.

Oil Circulation Fittings. The gearbox can be assembled to include oil circulation fittings. These fittings are designed such that the heated oil is drained from the box, and filtered cooled oil is re-injected into the gearbox over the gears while the unit is running.

Liquid Cooled Heat Sinks. In some applications, heat sinks can be attached to an exposed side of a gearbox through which a cooled liquid (i.e. water) is pumped. These heat sinks draw the excess heat out of the gearbox, providing an economical, often cleaner heat dissipation solution.

Lubrication Requirements

The operational life of any Tandler gearbox depends greatly on proper lubrication. The correct lubricant applied to the gears and bearings acts both as a lubricant and as a coolant. The main heat source in a gearbox is friction generated by meshing gear teeth, bearing friction, radial shaft seal friction, and the turbulent activity of the oil as the gear teeth plunge into it. The heat generated by friction must be dissipated by the outer surfaces of the gearbox. In most cases, where the gearbox is running below its maximum rated speed, adequate

TANDLER

lubrication and cooling is provided by the amount and type of oil in the oil reservoir. Tandler gearboxes are designed to operate at temperatures up to 90°C (200°F).

In some high speed and/or heavy load applications, excessive temperature must be carefully monitored. If your application exceeds the maximum temperatures noted above, additional cooling with the attachment of cooling ribs, or an oil circulation system, or a water cooled heat sink will be required. Contact your DieQua representative for all technical data regarding external cooling systems.

In some very low speed applications, the use of liquid grease for virtual lifetime lubrication is possible. Consult your DieQua representative for conditions where this may apply.

Change Intervals and Oil Capacities

For optimum performance, the first oil change should take place after an initial 500 hours of operation. Subsequent oil changes should be performed every 2000 hours for maximum gearbox life. If the gearbox is constantly running at high speed, or under heavy loads, a shorter interval may be required.

The recommended lubricants and viscosity have been selected, taking into account the wide variety of designs and applications where these gearboxes are used. Considering backlash, rotational speed and operating temperatures, other oils may perform better or worse under these conditions. Tandler gearboxes are filled at the factory with an ISO VG 46 oil. Approved suppliers and their products are listed at the right.

IMPORTANT: DO NOT USE HEAVY WEIGHT GEAR OIL! This type of oil may cause excessive heat and gear tooth wear. Use only one of the recommended oils or contact DieQua for lubrication options. To ensure proper operation, the oil level must be maintained as indicated by the oil level sight glass. Too little oil will result in insufficient cooling and lubrication. Too much oil will cause overheating and thermal breakdown of the oil.

The chart at right indicates the approximate oil quantities for each size gearbox.

Vertical Shaft Applications

Gearboxes mounted with a shaft in a vertical position will require special lubrication options. The bearings supporting the upper portion of the vertical shaft generally do not receive sufficient quantities of oil for proper lubrication and cooling. Several options exist:

1. S1515 – for vertical planet systems: The planetary system is sealed off from the spiral bevel gear section with a special seal. It has a separate oil

Technical Data

Speed Correction Gearboxes

sight-glass and is filled with the proper amount and type of oil.

2. **S515 d2** – for vertical d2 shafts: The ball bearing supporting the upper portion of the vertical shaft is replaced with a permanently lubricated sealed ball bearing.

3. **S515** d3 - for vertical correction d3 shafts: The ball bearing supporting the upper portion of the vertical shaft is replaced with a permanently lubricated sealed ball bearing.

Approved Gearbox Oils and Grease

Oil

Aral BP Castrol Esso Kluber Mobil Shell Texaco	Degol BG 46 GR-XP 46 (ISO) HYSPIN AWS 46 NUTO H 46 LAMORA 46 D.T.E. 25 Tellus Oil 46 Rando Oil HD B-46	Shell Special Gear Grease H Shell Grease S 3655 Mobilplex 44

Grease

Oil and Grease Capacities

Producer

Tandler gearboxes are filled at the factory with the appropriate quantity of oil. To ensure proper operation and peak performance, the oil level must be maintained as indicated by the oil sight glass. Too little oil will result in insufficient cooling and lubrication. Too much oil will cause overheating and thermal breakdown of the oil. In low rpm applications, the oil is replaced with grease.

				-	
Gearbox Size	Ltr.	Gearbox Size	Ltr.	Gearbox Size	Ltr.
SP2 00	0.25	SP2 0A	0.6	PE2 00	0.10
SP2 01	0.4	SP2 AB	0.9	PE2 01	0.15
SP2 A1	1.0	SP2 BC	1.7	PE2 A1	0.25
SP2 B1	1.5	SP2 CD	3.4	PE2 B1	0.4
SP2 C1	3.0	SP2 DE	8.5	PE2 C1	0.5
SP2 D1	6.0			PE2 D1	0.8
SP2 E1	12.5			PE2 E1	1.5
Gearbox	1.4.1	Gearbox	Gearbox Size Ltr.		1.4
Size	Ltr.	Size	Ltr.	Size	Ltr.
Size PD2 00	Ltr. 0.15	Size KD 01	Ltr. 0.25	Size KD2 A1	0.7
Size PD2 00 PD2 01	Ltr. 0.15 0.2	Size KD 01 KD A1	Ltr. 0.25 0.5	Size KD2 A1 KD2 B1	Ltr. 0.7 1.3
Size PD2 00 PD2 01 PD2 A1	0.15 0.2 0.3	Size KD 01 KD A1 KD B1	Ltr. 0.25 0.5 1.0	Size KD2 A1 KD2 B1 KD2 C1	Ltr. 0.7 1.3 2.3
Size PD2 00 PD2 01 PD2 A1 PD2 B1	0.15 0.2 0.3 0.6	Size KD 01 KD A1 KD B1 KD C1	Ltr. 0.25 0.5 1.0 2.0	Size KD2 A1 KD2 B1 KD2 C1 KD2 D1	0.7 1.3 2.3 4.0
Size PD2 00 PD2 01 PD2 A1 PD2 B1 PD2 C1	Ltr. 0.15 0.2 0.3 0.6 0.8	Size KD 01 KD A1 KD B1 KD C1 KD D1	Ltr. 0.25 0.5 1.0 2.0 3.5	Size KD2 A1 KD2 B1 KD2 C1 KD2 D1 KD2 E1	Ltr. 0.7 1.3 2.3 4.0 15.0
Size PD2 00 PD2 01 PD2 A1 PD2 B1 PD2 C1 PD2 D1	Ltr. 0.15 0.2 0.3 0.6 0.8 1.3	Size KD 01 KD A1 KD B1 KD C1 KD D1	Ltr. 0.25 0.5 1.0 2.0 3.5 13.0	Size KD2 A1 KD2 B1 KD2 C1 KD2 D1 KD2 E1	Ltr. 0.7 1.3 2.3 4.0 15.0

Oil capacities are approximate 1 liter = 1.06 qts. 1 kg = 2.2 lbs.

Speed Correction Gearboxes

Monitoring the Oil Level

For all gearbox sizes, the oil sight-glass is located in the middle of the housing, position 1, directly opposite of pinion d_1 .

Oil Fill/Drain Plug and Sight Glass Positions

Gearbox		Fill/Drain Plu	g per DIN	908	Dimensions (mm)			
Size	*	Position 1	*	Position 2	а	b		
SP2 00	2	R 3/4"	6	M12 x 1.5	39.6	39.6		
SP2 01	2	M30 x 1.5	6	M12 x 1.5	58	67		
SP2 A1	2	M30 x 1.5	6	M12 x 1.5	90	70		
SP2 B1	2	M30 x 1.5	6	M30 x 1.5	100	68		
SP2 C1	2	M30 x 1.5	6	M30 x 1.5	110	98		
SP2 D1	2	M30 x 1.5	6	M30 x 1.5	146	134		
SP2 E1	2	M42 x 1.5	6	M42 x 1.5	180	168		

* Number of locations - Refer to diagram below.

Special External Oil Sight-glass

In some cases, the normal oil sight-glass is not accessible or can not be used because the gearbox is mounted vertically. For these situations, Tandler offers special external oil sight-glasses which can be mounted on any major surface of the gearbox. The Tandler special design number is S-545. For ordering purposes, the position of the sight- glass must also be specified. Please consult your DieQua representative for the proper ordering information.

Gearbox Weights

Gearbox Size	Weight	Gearbox Size	Weight	Gearbox Size	Weight	Gearbox Size	Weight	Gearbox Size	Weight
SP2 00 SP2 01 SP2 A1 SP2 B1 SP2 C1 SP2 D1	8.00 kg 16.00 kg 25.50 kg 46.00 kg 87.00 kg 155.00 kg	PE2 00 PE2 01 PE2 A1 PE2 B1 PE2 C1 PE2 D1	4.5 kg 9.00 kg 14.00 kg 22.00 kg 35.50 kg 60.00 kg	PD2 00 PD2 01 PD2 A1 PD2 B1 PD2 C1 PD2 D1	6.50 kg 13.50 kg 21.00 kg 29.00 kg 51.00 kg 86.00 kg	KD 01 KD A1 KD B1 KD C1 KD D1 KD F1	9.00 kg 18.00 kg 33.00 kg 55.00 kg 110.00 kg 215.00 kg	KD2 A1 KD2 B1 KD2 C1 KD2 D1 KD2 E1	24.00 kg 43.00 kg 71.00 kg 143.00 kg 280.00 kg
SP2 E1	290.00 kg	PE2 E1	94.00 kg	PD2 E1					

Gearbox weights are approximate. 1 kg = 2.2 lbs.

Special Design Options

Speed Correction Gearboxes

Upgraded Performance

- 1. Reduced Backlash. All gearboxes are available with a reduced backlash option.
- **2. Reduced Transmission Error.** Tandler offers two additional improved gear classifications: a G2 and a higher G1 classification. These two classifications refer to improved transmission error.

Increased Radial Load Capacity Bearings

The radial load capacity for some shafts can be increased by substituting tapered roller bearings for the existing bearings. For technical data and pricing, please consult your DieQua representative.

Special Shafts

Custom shaft designs are available to meet many shafting requirements. Shafts can be lengthened, shortened, increased or decreased in diameter, stepped, or have any key configuration machined into them.

Special Ratios

Tandler has complete design and fabrication facilities to produce custom gear sets for many whole or fractional ratios.

Special Housings

- 1. Corrosion-resistant plating. All of the external components can be plated for corrosion resistance. A variety of plating options are available.
- 2. Dimension modifications. Tandler will custom design gearbox housings to meet any special design criteria. For larger production runs, Tandler will also have custom castings produced to minimize costs.

Remote Phase Adjusting

DieQua can design and fabricate brackets, motor flanges, and any hardware needed to mount correction motors onto any Tandler phasing gearbox. DieQua can also provide the motors and simple electronics for remote phasing applications.

Remote Switching Actuators

For types SP2S, and SP2AS gearboxes, DieQua offers pneumatic actuators for remote switching applications. A 3-position actuator is used for SP2S gearboxes, and a 2-position actuator is used for the SP2AS gearbox. Simple electronics and control mechanisms can also be supplied. Consult your DieQua representative for complete details.

Complete Repair Service

DieQua Corporation is a complete factory service center for all Tandler gearboxes. DieQua maintains a staff of highly skilled technicians along with a large inventory of spare parts. Should a Tandler gearbox experience any type of failure in the field, simply contact your DieQua representative to obtain a Return Material Authorization (RMA) number and return instructions. Return the gearbox to our factory, and our technicians will inspect and evaluate the unit free of charge. A repair or replacement quote will be generated and immediately sent to your attention. Upon completion of the repair, the gearbox is inspected to ensure that it meets or exceeds original factory specifications. It is then refilled with oil and returned.

The Benefits of Choosing Tandler

Low Backlash

Low standard backlash and a reduced backlash option optimize and enhance positioning accuracies while providing smooth, quiet, and efficient torque transmission.

Low Transmission Error

Precision matched set spiral bevel gears and ground planetary gears, along with reduced tolerance component manufacturing and custom assembly, result in the ultimate in rotary motion control.

Specialty Models

The widest range of shaft configurations and connection options provide unmatched design versatility.

More Ratios

The greatest number of ratios offered anywhere in a phaseable gearbox program assures that the required output speed is achieved.

Mounting Features

Centering pilots, machined housings with tapped holes on all sides, shaft shoulders, and tapped shaft ends guarantee precise and trouble-free installation.

Custom Designs

Modification of all standard dimensions and complete special designs are available to allow the best possible design solutions.

Worldwide Support

A global network of sales partners and technical centers assures the highest levels of customer service.

Specialists in Precision Power Transmission Components

180 Covington Drive, Bloomingdale, Illinois USA 60108-3105 Phone: 630-980-1133 Fax: 630-980-1232 E-mail: info@diequa.com www.diequa.com

Speed Correction Drives