

Precision Link Conveyor LF Series

The sky is the limit for the Motion product line. Flexible, made-to-order custom designs which are not featured in the product catalog have long been embedded in our corporate philosophy. We keep 10% of our entire workforce in reserve for these custom applications. Our skilled staff are available to assist our customers on a daily basis.

Our drives meet the highest standards regarding quality and precision. Our cams are manufactured in a different manner with regards to our competition, therefore it is often possible to use smaller rotary table sizes supplied by Motion instead of larger ones supplied by our competitors.

Our extensive design expertise enables us to meet customer requirements down to the last detail. We can combine the advantages of different forms of drives to create new value-added solutions which fit the bill completely. This is the added value which we have been offering to our customers in different sectors for many years.

Main fields

Assembly Industry, Medical Technology, Cosmetics, Electronic Industry

- Fast assembly of small parts - up to 150 cycles per minute
- Transportation and manufacturing of wires or similar parts
- Mechanical and optical investigation
- Welding, Tumbling, Riveting, Bending, Marking, Filling....

Precision Link Conveyor LF - design and mode of operation
The main component is a continuous chain manufactured from highly precise aluminum links. There are four cam followers per link for the vertical guideance and the guide rails are hardened and fine-milled. Two cam followers provide horizontal guidance through a hardened and milled guide rail. The links are connected by bolts and needle bearings.
The main frame is made from extruded aluminum and steel plates. The conveyor can be mounted to the extruded aluminum or the steel plates. Additional external stations can also be mounted there.
The chain is driven by a hardened cam wheel which is driven by a standard indexer or any other custom specified drive. At the other end, a hard 180° cam guides the chain. This cam is preloaded, so there is no backlash at the links. The linear stroke of the chain depends on the diameter of the cam wheel. One cycle of the indexer equals a linear stroke of one, two, or three links.

Advantages for design engineers and special machine builders

. Proven reliable through many years of service
. Vertical assembly - saves room. The empty carriers travel through the bottom of the machine

- Horizontal assembly - in an oval formation. Both sides of the machine can be used for assembly
- The alternative drive shaft of the indexer can be used for a synchronously rotating parallel shaft to drive other units
. The aluminum profile system can be used to mount other external stations fast and easily

Allowance for individual customer requirements

. Custom drives available

- Optional overload protection
- Dwell and index angle can be customized in a large range
- Non-standard links and linear strokes are possible
- The chain can be designed in metric or imperial units
- Customized color without additional cost
: Stainless steel, nickel plating or other special surfaces are available

Technical benefits for users

. High reliability and long lifetime
a Robust method of construction
. Proven to last many years
. Needle or ball bearings rolling in oil bath or on clean, dry and hard surfaces
a Low maintenance (only once a year check and adjust the preloading of the chain)

- Easy to operate using Allen Bradley PLC

LF050

Dimensions

The dimensions pictured are standard for the LF050 Precision Link Conveyor. Customized applications centered around the LF050 standard size link can be manufactured upon request. Motion LF050 Conveyors can be mounted on the extruded aluminum. The links
and the steel plates can be machines to your specifications. The conveyor can be delivered without drive or the drive can be servo. Special dust covers or rubber lips between the links are available.

Load Table LF050

The load table for the LF050 is available only upon request at this time.

Technical specifications

Technical specifications for the LF050 are only available upon request at this time.

LF080

The shown drive is a RT160 with brake motor (Kobold) size IEC71 and wormgear FRS50

Dimensions

The dimensions shown here are the standard dimensions. Dimension " A " depends on the number of links. Motion LF08O Conveyors can be mounted on the extruded aluminum " F ". The links and the steel plates can be machined to your specifications. The dimensions marked with * depend on the size of the drive used. The conveyor can be delivered without drive or the drive can be a servo. Special dust covers or rubber lips between the links are available.

Load Table LF080

s [mm]	t [s]	$\begin{gathered} n_{L}=12 ; n_{T}=32 \\ A=960 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=18 ; n_{\mathrm{T}}=44 \\ \mathrm{~A}=1440 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=24 ; n_{\mathrm{T}}=56 \\ \mathrm{~A}=1920 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{l_{1}}=30 ; n_{T}=68 \\ A=2400 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=36 ; n_{T}=80 \\ A=2880 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
80^{11}	$\mathrm{t}=$	0.16	0.19	0.22	0.25	0.18	0.22	0.26	0.29	0.21	0.25	0.3	0.23	0.23	0.28	0.33	0.37	0.25	0.30	0.35	0.4
160^{21}	$\mathrm{t}=$	0.24	0.29	0.34	0.38	0.28	0.34	0.40	0.45	0.31	0.39	0.45	0.35	0.35	0.43	0.50	0.56	0.38	0.46	0.54	0.61
240^{31}	$\mathrm{t}=$	0.32	0.40	0.46	0.52	0.38	0.47	0.54	0.61	0.43	0.53	0.61	0.47	0.47	0.58	0.68	0.76	0.51	0.63	0.74	0.83

s [mm]	t [s]	$\begin{gathered} n_{\mathrm{n}}=42 ; \mathrm{n}_{\mathrm{T}}=92 \\ \mathrm{~A}=3360 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=48 ; n_{\mathrm{T}}=104 \\ \mathrm{~A}=3840 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=54 ; n_{\mathrm{T}}=116 \\ \mathrm{~A}=4320 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=60 ; n_{\mathrm{T}}=128 \\ \mathrm{~A}=4800 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=66 ; n_{T}=140 \\ A=5280 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
80^{11}	t=	0.27	0.33	0.38	0.43	0.28	0.35	0.41	0.46	0.60	0.37	0.43	0.49	0.31	0.39	0.45	0.51	0.33	0.41	0.48	0.54
16021	t=	0.40	0.50	0.58	0.66	0.43	0.53	0.62	0.70	0.45	0.56	0.66	0.74	0.48	0.59	0.69	0.78	0.50	0.62	0.73	0.82
2403	t=	0.55	0.68	0.79	0.90	0.59	0.73	0.85	0.96	0.62	0.77	0.90	1.01	0.65	0.81	0.95	1.07	0.68	0.85	0.99	1.12

$\mathrm{s}=$ Stroke [mm]
 $\mathrm{t}=$ Stroke Time [s]

${ }^{1)}$ The chain moves one link with each index

Technical specifications

Main dimensions

Distance A** [mm]
Weight at $\mathrm{A}=2000[\mathrm{~kg}]$

Stroke time** ${ }^{*}$]
Stroke** [mm]
Direction
in increments of 480
300 see Load Table

80, 160 or 240 right, left
** Other distances "A", strokes or stroke times by request

$$
n_{l}=\text { Number of links in line }
$$ $n_{T}=$ Number of links total

${ }^{2)}$ The chain moves two links with each index
$m=$ Weight per link [kg] $\mathrm{A}=$ Distance between U-Turns
${ }^{3)}$ The chain moves three links with each index

Loadings

per static link

Force vertical [N]	700
Force horizontal [N]	2600
Tilting moment [Nm]	80
Pull force at the chain [N]	750

Standard Drive

RT160 with $8^{1}, 4^{2}$ or $8 / 3^{3}$ Indexes

Precision

in feed direction*

at the drive [mm]	± 0.04
opposite the drive [mm]	± 0.07
Transverse to feed direction [mm]	± 0.05
vertical runout [mm]	± 0.03

[^0]
LF100

The shown drive is a RT160 with brake motor (Kobold) size IEC71 and wormgear FRS50

Dimensions

The dimensions shown here are the standard dimensions. Dimension " A " depends on the number of links. Motion LF Conveyors can either be mounted on the extruded aluminum, " F " or on the steel plates "C". The links and the steel plates can be machined to your specifications. The dimensions
marked with * depend on the size of the drive used. The conveyor can be delivered without drive or the drive can be a servo. Special dust covers or rubber lips between the links are available.
\triangle Caution! Allow space on one side of the index wheel for adjusting the preload!

A = Distance Between U-Turns
D = Index Wheel
$\mathrm{E}=$ The $180^{\circ} \mathrm{Cam}$
$\mathrm{F}=$ Aluminum Profile System 8-80x120

s [mm]	t [s]	$\begin{gathered} n_{1}=10 ; n_{T}=28 \\ A=1000 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=15 ; n_{\mathrm{T}}=38 \\ \mathrm{~A}=150 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=20 ; n_{\mathrm{T}}=48 \\ \mathrm{~A}=2000 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=25 ; \mathrm{n}_{\mathrm{T}}=58 \\ \mathrm{~A}=250 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=30 ; n_{T}=68 \\ A=3000 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				$\mathrm{m}[\mathrm{kg}]$				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
100^{11}	$t=$	0.16	0.19	0.22	0.24	0.18	0.22	0.26	0.29	0.21	0.25	0.29	0.32	0.23	0.28	0.32	0.36	0.25	0.30	0.34	0.39
20021	$\mathrm{t}=$	0.24	0.29	0.33	0.37	0.28	0.34	0.39	0.44	0.31	0.38	0.44	0.49	0.35	0.42	0.48	0.54	0.38	0.46	0.52	0.59
300^{31}	$\mathrm{t}=$	0.33	0.40	0.46	0.51	0.38	0.46	0.53	0.60	0.43	0.52	0.60	0.67	0.47	0.57	0.66	0.74	0.51	0.62	0.72	0.80

s [mm]	t [s]	$\begin{gathered} n_{L}=35 ; n_{T}=78 \\ A=3500 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=40 ; n_{\mathrm{T}}=88 \\ \mathrm{~A}=400 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=45 ; \mathrm{n}_{\mathrm{T}}=98 \\ \mathrm{~A}=450 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=50 ; n_{T}=108 \\ A=500 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=55 ; n_{T}=118 \\ A=5500 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
100^{17}	$t=$	0.26	0.32	0.37	0.41	0.28	0.34	0.39	0.44	0.30	0.36	0.42	0.47	0.31	0.38	0.44	0.49	0.33	0.40	0.46	0.52
20021	$\mathrm{t}=$	0.40	0.49	0.56	0.63	0.43	0.52	0.60	0.67	0.45	0.55	0.63	0.71	0.47	0.58	0.67	0.75	0.50	0.60	0.70	0.79
300^{31}	$t=$	0.55	0.67	0.77	0.86	0.58	0.71	0.82	0.92	0.62	0.75	0.87	0.97	0.65	0.79	0.91	1.02	0.68	0.83	0.96	1.07

[^1]${ }^{1)}$ The chain moves one link with each index

Technical specifications

Main dimensions

Distance A $^{* *}$ [mm]
Weight at $A=2000[\mathrm{~kg}]$
Stroke time ${ }^{* *}[\mathrm{~s}]$
Stroke** $[\mathrm{mm}]$
Direction
in increments of 500
350 see Load Table
100,200 or 300 right, left
** Other distances "A", strokes or stroke times by request
$n_{L}=$ Number of links in line $\mathrm{n}_{\mathrm{T}}=$ Number of links total
${ }^{2)}$ The chain moves two links with each index
$m=$ Weight per link [kg] A = Distance between U-Turns
${ }^{3)}$ The chain moves three links with each index

Loadings

per static link

Force vertical [N]	700
Force horizontal [N]	2600
Tilting moment [Nm]	80
Pull force at the chain [N]	750

Standard Drive

RT160 with $8^{1}, 4^{2}$ or $8 / 3^{3}$ Indexes

Precision

in feed direction*

at the drive [mm]	± 0.04
opposite the drive [mm]	± 0.07
Transverse to feed direction [mm]	± 0.05
vertical runout [mm]	± 0.03

[^2]
LF125

The shown drive is a RT160 with brake motor (Kobold) size IEC71 and wormgear FRS50

Dimensions

The dimensions shown here are the standard dimensions. Dimension "A" depends on the number of links. Motion LF Conveyors can either be mounted on the extruded aluminum " F " or on the steel plates "C". The links and the steel plates can be machined to your specifications. The dimensions
marked with * depend on the size of the drive used. The conveyor can be delivered without drive or the drive can be a servo. Special dust covers or rubber lips between the links are available.
Δ Caution! Allow space on one side of the index wheel for adjusting the preload!

A = Distance Between U-Turns
D = Index Wheel
$\mathrm{E}=$ The $180^{\circ} \mathrm{Cam}$
$F=$ Aluminum Profile System 8-80x120

Load Table LF125

s [mm]	t [s]	$\begin{gathered} n_{L}=8 ; n_{T}=24 \\ A=1000 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=12 ; n_{\mathrm{T}}=32 \\ \mathrm{~A}=1500 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=16 ; n_{\mathrm{T}}=40 \\ \mathrm{~A}=2000 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=20 ; n_{\mathrm{T}}=48 \\ \mathrm{~A}=250 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=24 ; n_{T}=56 \\ A=3000 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
125 ${ }^{1 /}$	t=	0.17	0.20	0.23	0.25	0.19	0.23	0.26	0.29	0.22	0.26	0.29	0.32	0.24	0.28	0.32	0.36	0.26	0.30	0.35	0.39
$250{ }^{21}$	t=	0.25	0.30	0.34	0.38	0.29	0.35	0.40	0.44	0.33	0.39	0.45	0.49	0.36	0.43	0.49	0.54	0.39	0.46	0.53	0.59
$375^{3 /}$	t=	0.35	0.41	0.47	0.52	0.40	0.48	0.54	0.60	0.45	0.53	0.61	0.68	0.49	0.59	0.67	0.74	0.53	0.63	0.72	0.80

s [mm]	$t[s]$	$\begin{gathered} n_{\mathrm{L}}=28 ; n_{\mathrm{T}}=64 \\ \mathrm{~A}=3500 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=32 ; \mathrm{n}_{\mathrm{T}}=72 \\ \mathrm{~A}=400 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=36 ; \mathrm{n}_{\mathrm{T}}=80 \\ \mathrm{~A}=450 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=40 ; \mathrm{n}_{\mathrm{T}}=88 \\ \mathrm{~A}=500 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=44 ; \mathrm{n}_{\mathrm{T}}=96 \\ \mathrm{~A}=5500 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
$125^{1 /}$	t=	0.27	0.33	0.37	0.41	0.29	0.35	0.40	0.44	0.31	0.37	0.42	0.46	0.32	0.38	0.44	0.49	0.34	0.40	0.46	0.51
25021	$\mathrm{t}=$	0.42	0.50	0.57	0.63	0.44	0.53	0.60	0.67	0.47	0.56	0.64	0.71	0.49	0.58	0.67	0.74	0.51	0.61	0.70	0.78
$375{ }^{3}$	t=	0.57	0.68	0.77	0.86	0.60	0.72	0.82	0.92	0.64	0.76	0.87	0.97	0.67	0.80	0.91	1.02	0.70	0.83	0.95	1.06

[^3]${ }^{1)}$ The chain moves one link with each index
$n_{L}=$ Number of links in line
$\mathrm{n}_{\mathrm{T}}=$ Number of links total
${ }^{2)}$ The chain moves two links with each index
$m=$ Weight per link [kg] A = Distance between U-Turns
${ }^{3)}$ The chain moves three links with each index

Technical specifications

Main dimensions

Distance A** ${ }^{* m m}$ in increments of 500
Weight at $A=2000[k g]$
Stroke time ${ }^{* *}$ [s]
Stroke** [mm]
Direction

[^4]
Loadings

per static link
Force vertical [N] 700
Force horizontal [N$] \quad 2600$
Tilting moment [Nm] 80
Pull force at the chain [N] 750

Precision

in feed direction*

at the drive [mm]	± 0.04
opposite the drive [mm]	± 0.07
Transverse to feed direction $[\mathrm{mm}]$	± 0.05
vertical runout $[\mathrm{mm}]$	± 0.03

[^5]
LF150

The shown drive is a RT250 with brake motor (Kobold) size IEC80 and wormgear FRS60

Dimensions

The dimensions shown here are the standard dimensions. Dimension "A" depends on the number of links. Motion LF Conveyors can either be mounted on the extruded aluminum " F " or on the steel plates "C". The links and the steel plates can be machined to your specifications. The dimensions
marked with * depend on the size of the drive used. The conveyor can be delivered without drive or the drive can be a servo. Special dust covers or rubber lips between the links are available.
\triangle Caution! Allow space on one side of the index wheel for adjusting the preload!

A = Distance Between U-Turns
$D=$ Index Wheel
$\mathrm{E}=$ The $180^{\circ} \mathrm{Cam}$
$\mathrm{F}=$ Aluminum Profile System 8-80x120

Load Table LF150

s [mm]	t [s]	$\begin{gathered} n_{L}=8 ; n_{T}=28 \\ A=1200 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=12 ; n_{\mathrm{T}}=36 \\ \mathrm{~A}=1800 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=16 ; n_{\mathrm{T}}=44 \\ \mathrm{~A}=2400 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=20 ; n_{T}=52 \\ A=3000 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{L}=24 ; n_{T}=60 \\ A=3600 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
150 ${ }^{1 /}$	t=	0.28	0.30	0.32	0.34	0.30	0.33	0.35	0.38	0.32	0.35	0.38	0.41	0.34	0.37	0.40	0.44	0.35	0.39	0.43	0.46
300^{21}	t=	0.39	0.42	0.46	0.48	0.42	0.46	0.50	0.53	0.45	0.49	0.54	0.57	0.48	0.53	0.57	0.62	0.50	0.56	0.61	0.65
450^{31}	t=	0.52	0.56	0.60	0.64	0.56	0.61	0.66	0.70	0.59	0.65	0.71	0.76	0.63	0.69	0.75	0.81	0.66	0.73	0.80	0.86

s [mm]	t [s]	$\begin{gathered} n_{\mathrm{L}}=28 ; n_{\mathrm{T}}=68 \\ \mathrm{~A}=4200 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=32 ; \mathrm{n}_{\mathrm{T}}=76 \\ \mathrm{~A}=480 \mathrm{~mm} \end{gathered}$				$\begin{gathered} n_{\mathrm{L}}=36 ; n_{\mathrm{T}}=84 \\ \mathrm{~A}=5400 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=40 ; \mathrm{n}_{\mathrm{T}}=92 \\ \mathrm{~A}=600 \mathrm{~mm} \end{gathered}$				$\begin{gathered} \mathrm{n}_{\mathrm{L}}=44 ; \mathrm{n}_{\mathrm{T}}=100 \\ \mathrm{~A}=660 \mathrm{~mm} \end{gathered}$			
		m [kg]				m [kg]				m [kg]				m [kg]				m [kg]			
		0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2	0.5	1	1.5	2
$150^{1 /}$	$t=$	0.37	0.41	0.45	0.49	0.39	0.43	0.47	0.51	0.40	0.45	0.50	0.54	0.42	0.47	0.52	0.56	0.43	0.49	0.54	0.58
30021	t=	0.52	0.58	0.64	0.69	0.55	0.61	0.67	0.73	0.57	0.64	0.70	0.76	0.59	0.66	0.73	0.79	0.61	0.69	0.76	0.82
$450{ }^{3}$	$\mathrm{t}=$	0.69	0.77	0.84	0.91	0.72	0.81	0.88	0.96	0.75	0.84	0.92	1.00	0.78	0.87	0.96	1.04	0.81	0.91	1.00	1.09

$\mathrm{s}=$ Stroke [mm]
 $\mathrm{t}=$ Stroke Time [s]

${ }^{1)}$ The chain moves one link with each index

Technical specifications

Main dimensions

Distance A $^{* *}$ [mm]
Weight at $A=2000[k g]$
Stroke time ${ }^{* *}[\mathrm{~S}]$
Stroke** [mm]
Direction
in increments of 600
800 see Load Table

150,300 or 450 right, left

Loadings

per static link

$$
\text { Force vertical }[\mathrm{N}] \quad 1250
$$

Force horizontal [N] 2600
Tilting moment [Nm]
Pull force at the chain [N]

Standard Drive

RT160 with $8^{1}, 4^{2}$ or $8 / 3^{3}$ Indexes
** Other distances "A", strokes or stroke times by request

$$
n_{l}=\text { Number of links in line }
$$ $n_{T}=$ Number of links total

${ }^{2)}$ The chain moves two links with each index
$m=$ Weight per link [kg] $\mathrm{A}=$ Distance between U-Turns
${ }^{3)}$ The chain moves three links with each index

Precision

in feed direction*

at the drive [mm]	± 0.04
\quad opposite the drive [mm]	± 0.07
Transverse to feed direction [mm]	± 0.05
vertical runout [mm]	± 0.03

[^6]Type
\square LF080
\square LF100
\square LF125
\square LF150
\square other type

Distance A [mm] \qquad
Number of links in line n_{L}
Stroke (1 x . 2 x or 3 x length of one link) \qquad
\square vertical assembly (using links on top)
\square horizontal assembly (using links on both sides)

Mode of motion

\square Stop mode (Fixed index time, Variable dwell time)

index time

\qquadContinuous mode (Fixed index and dwell time)
Number of cycles per minute \qquad
Ratio index time : dwell time (or angle) \qquad

Payload

Weight of tooling
Weight of tooling
Distance from center point of mass of payload to surface of the link \qquad
horizontal assembly

Possible mounting positions for the drive units

L (in pull direction on the left)

Position of the free drive shaft

A (drive shaft to the outside)

I (drive shaft to the inside)

Drive

\square With indexer	Brake Voltage $\quad \square$ 24V DC
Mounting position of drive $\quad \square \mathrm{L} \quad \square \mathrm{R}$	$\square 230 \mathrm{~V}$ AC
Position of the free drive shaft $\quad \square \mathrm{A} \quad \square \mathrm{l}$	\square 400V AC
Motor voltage $\quad \square 277 / 480 \mathrm{~V} 60 \mathrm{~Hz}$	\square other
\square 230/400V 50Hz	Safety clutch at the drive $\quad \square$ yes $\quad \square$ no
\square other	
	\square Without drive
	\square With custom specified drive

Accessories

\qquad

Allen Bradley PLC

\square Machine feet (only at vertical assembly)
Number
Distance between floor and upper link \qquad

[^0]: * for the first and the last link in line we can not guarantee this precision.

[^1]: $\mathrm{s}=$ Stroke [mm]
 $\mathrm{t}=$ Stroke Time [s]

[^2]: * for the first and the last link in line we can not guarantee the precision.

[^3]: $\mathrm{s}=$ Stroke [mm]
 $\mathrm{t}=$ Stroke Time [s]

[^4]: ** Other distances "A", strokes or stroke times by request

[^5]: * for the first and the last link in line we can not guarantee the precision.

[^6]: * for the first and the last link in line we can not guarantee the precision.

